If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-9X-352=0
a = 1; b = -9; c = -352;
Δ = b2-4ac
Δ = -92-4·1·(-352)
Δ = 1489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{1489}}{2*1}=\frac{9-\sqrt{1489}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{1489}}{2*1}=\frac{9+\sqrt{1489}}{2} $
| (3r-4)=(3r-5) | | 3/4n+3/2+2n=-7/2-33/4n | | 9x+5x=13x | | 2x+2.8=1.2x+9.8 | | 20x+5=34x+1 | | 2x+7=5x+12 | | 21+8x-24=29 | | 9x+2(x-4)=13x-2(3-x) | | 5(x+2)–3x=12 | | M=3(m-2) | | 11y+19=107 | | 4(-2x-3)=3+8x+1 | | 5/7(k+5)=2/3 | | 3x=12=2x-4 | | 16-2r=3/2r+9 | | 3+4x=7+4x | | 37-7k=-5k-(8k-5) | | 70=-5(5x+6) | | (X)°=(3x-28)° | | -4x16=56 | | -7x+10-2x=-8 | | -3n+7=56 | | 2(f+3)+4f=10+4f | | 8(b-2)=9(5b-2) | | 2/3w-5/2=-9/5 | | 2x+6=5x-3(x-2) | | 20=4(3x+3)+13x | | -1x+7=9=3x | | 3000=2580+2980+x/3 | | 7x=19=-2 | | -5x+17=4x-10 | | X+y+2×+y+20+×+60=180 |